# COMP IIO/L Lecture 4 

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

## Outline

- New types:long and double
- Reading in with Scanner
- Performing operations on them
- How they interact with each other and other types
- Exponentiation with Math.pow()


## NewType: long

# Revisit: AddTwo.java 

Try with:

1-9876543210

2-1234567890 and 1234567890

## Fundamental Problem

- int stores integers in the following range:
$-2^{31}$ to (231-1)
- Numbers out of this range won't work right


## long for Bigger Integers

- long works like int, but its range is exponentially larger

$$
\bullet-2^{63} \text { to }\left(2^{63}-1\right)
$$

## Working with long

Declaring a long variable
long myLong;

## Working with long

## Declaring a long variable

> long myLong;

Reading in a long with Scanner
Scanner in = new Scanner(System.in);
long myLong = in.nextLong();

## Example: LongAddTwo.java

## Specifying long

- By default, if you write a number, Java assumes it's an int
- If you follow it with an 1 (the letter ell), Java will treat it as a long


## Specifying long

- By default, if you write a number,Java assumes it's an int
- If you follow it with an 1 (the letter ell), Java will treat it as a long

$$
14 \text { // int }
$$

## Specifying long

- By default, if you write a number,Java assumes it's an int
- If you follow it with an 1 (the letter ell), Java will treat it as a long

$$
14 \text { // int }
$$

141 // long (that's an ell)

## Interactions with long

String concatenation works like it does with int

## Interactions with long

String concatenation works like it does with int

$$
\text { "my string" + } 141
$$

## Interactions with long

String concatenation works like it does with int

$$
\begin{gathered}
\text { "my string" }+141 \\
\text { "my string14" }
\end{gathered}
$$

## Interactions with long

String concatenation works like it does with int

$$
\begin{gathered}
\text { "my string" }+141 \\
\text { "my string14" }
\end{gathered}
$$

$$
131 \text { + "other string" }
$$

## Interactions with long

String concatenation works like it does with int

$$
\begin{gathered}
\text { "my string" }+141 \\
\text { "my string14" }
\end{gathered}
$$

## 131 + "other string" <br> "13other string"

## Interactions with long

Addition works like it does with int

# Interactions with long 

Addition works like it does with int

$$
51+41
$$

# Interactions with long 

Addition works like it does with int

$$
\begin{gathered}
5 l+41 \\
91
\end{gathered}
$$

# Interactions Between long and int 

Values coerce into long

## Interactions Between long and int Values coerce into long

$$
41+2
$$

# Interactions Between long and int 

Values coerce into long

$$
\begin{gathered}
41+2 \\
61
\end{gathered}
$$

# Interactions Between long and int 

Values coerce into long

$$
\begin{gathered}
41+2 \\
61
\end{gathered}
$$

$$
3+61
$$

# Interactions Between long and int 

Values coerce into long

$$
\frac{\begin{array}{c}
41+2 \\
61
\end{array}}{\begin{array}{c}
3+61 \\
91
\end{array}}
$$

## NewType: double

## Revisit:

AddTwo.java

## double for Floating-Point

- double stores floating-point values
- float also stores floating-point values, but it's half the size of double
- Narrower range, less precise


## Sizes of Primitive Types

| byte | 8 bits |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| short | 8 bits | 8 bits |  |  |  |  |  |  |
| int | 8 bits | 8 bits | 8 bits | 8 bits |  |  |  |  |
| long | 8 bits |
| float | 8 bits | 8 bits | 8 bits | 8 bits |  |  |  |  |
| double | 8 bits |
| char | 8 bits | 8 bits |  |  |  |  |  |  |

## Working with double

Declaring a double variable double myDouble;

## Working with double

Declaring a double variable double myDouble;

Reading in a double with Scanner
Scanner in = new Scanner(System.in); double myDouble = in.nextDouble();

## Example: <br> DoubleAddTwo.java

# Specifying double 

If the number contains a decimal point, Java treats it as a double

# Specifying double 

If the number contains a decimal point, Java treats it as a double

$$
4.5 \text { // double }
$$

## Specifying double <br> If the number contains a decimal point, Java treats it as a double

$$
\begin{aligned}
& 4.5 \text { // double } \\
& 1.0 \text { // double }
\end{aligned}
$$

## Specifying double <br> If the number contains a decimal point, Java treats it as a double

$$
\begin{aligned}
& 4.5 \text { // double } \\
& 1.0 \text { // double } \\
& 0.2 \text { // double }
\end{aligned}
$$

## Interactions with double

String concatenation works like it does with int

## Interactions with double

String concatenation works like it does with int

$$
\text { "my string" + } 0.5
$$

## Interactions with double

String concatenation works like it does with int

$$
\begin{aligned}
& \text { "my string" }+0.5 \\
& \text { "my string0.5" }
\end{aligned}
$$

## Interactions with double

String concatenation works like it does with int

$$
\begin{gathered}
\text { "my string" }+0.5 \\
\text { "my string0.5" }
\end{gathered}
$$

$$
0.2 \text { + "other string" }
$$

## Interactions with double

String concatenation works like it does with int

$$
\begin{aligned}
& \text { "my string" }+0.5 \\
& \text { "my string0.5" }
\end{aligned}
$$

0.2 + "other string"
"0.2other string"

## Interactions with double

Addition works like it does with int

## Interactions with double

Addition works like it does with int

$$
5.0+4.2
$$

## Interactions with double

Addition works like it does with int

$$
\begin{gathered}
5.0+4.2 \\
9.2
\end{gathered}
$$

# Interactions Between double and int 

Values coerce into double

# Interactions Between double and int 

Values coerce into double

$$
0.5+2
$$

# Interactions Between double and int 

Values coerce into double

$$
\begin{gathered}
0.5+2 \\
2.5
\end{gathered}
$$

# Interactions Between double and int 

Values coerce into double

$$
\begin{gathered}
0.5+2 \\
2.5
\end{gathered}
$$

$3+0.75$

## Interactions Between double and int

Values coerce into double

$$
\begin{gathered}
\begin{array}{c}
0.5+2 \\
2.5
\end{array} \\
\hline \begin{array}{c}
3+0.75 \\
3.75
\end{array}
\end{gathered}
$$

# Interactions Between double and long 

Values coerce into double

## Interactions Between

## double and long

Values coerce into double

$$
0.5+41
$$

## Interactions Between

## double and long

Values coerce into double

$$
\begin{gathered}
0.5+41 \\
4.5
\end{gathered}
$$

## Interactions Between

## double and long

Values coerce into double

$$
\begin{gathered}
0.5+41 \\
4.5
\end{gathered}
$$

$$
31+0.75
$$

## Interactions Between

## double and long

Values coerce into double

$$
\begin{gathered}
0.5+41 \\
4.5 \\
\hline 31+0.75 \\
3.75
\end{gathered}
$$

## Exponentiation with Math.pow ()

## Exponentiation

Use Math.pow () for exponentiation (something to the power of something else)

## Exponentiation

Use Math.pow () for exponentiation (something to the power of something else)

Wanted: $\mathbf{2}^{7}$

## Exponentiation

Use Math. pow () for exponentiation (something to the power of something else)

## Wanted: $2^{7}$

Math.pow (2, 7)

## Exponentiation

Use Math. pow () for exponentiation (something to the power of something else)

Wanted: $2^{7}$
Math.pow (2, 7)

Wanted:3.45.6

## Exponentiation

Use Math. pow () for exponentiation (something to the power of something else)

Wanted: $2^{7}$
Math.pow (2, 7)

Wanted:3.45.6
Math.pow(3.4, 5.6)

## Example:

Exponentiation.java

